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In this paper, we investigate phonon effects on the optical properties of a spherical quantum dot. For this
purpose, we consider the interaction of a spherical quantum dot with classical and quantum fields while the
exciton of quantum dot interacts with a solid-state reservoir. We show that phonons strongly affect the Rabi
oscillations and optical coherence on first picoseconds of dynamics. We consider the quantum statistics of
emitted photons by quantum dot and we show that these photons are antibunched and obey the sub-Poissonian
statistics. In addition, we examine the effects of detuning and interaction of quantum dot with the cavity mode
on optical coherence of energy levels. The effects of detuning and interaction of quantum dot with cavity mode
on optical coherence of energy levels are compared to the effects of its interaction with classical pulse.
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I. INTRODUCTION

The fundamental system in cavity quantum electrodynam-
ics �cavity-QED� is a two-level atom interacting with a
single-cavity mode.1,2 Recent developments in semiconduc-
tor nanotechnology have shown that excitons in quantum
dots �QDs� constitute an alternative two-level system for
cavity-QED application.3 There are many similarities be-
tween the excitons in QDs and atomic systems such as the
discrete level structures which is subsequent of three-
dimensional confinement of electrons. On the other hand,
there are also important differences, for example, coupling to
phonons, carrier-carrier interaction, and surface fluctuation.
Coupling of electrons to phonons plays a major role in QDs.
The coupling of phonons to the QD provides a basic dephas-
ing mechanism and thus marks a lower limit for the
decoherence.4–6 In self-assembled QDs it is indeed the elas-
tic phonon scattering �pure dephasing� which dominates the
loss of coherence on a picosecond time scale at temperatures
below 100 K.7 The effects of electron-phonon interactions on
strong exciton-photon coupling in cavity-QED have been
considered.8 It has been shown9 that the phonon-induced
damping of Rabi oscillations in a QD is a nonmonotonic
function of the laser-field intensity that is increasing at low
fields and decreasing at high fields.

QDs are also promising candidates for efficient, determin-
istic single photon sources.10,11 Then the QDs are important
sources of nonclassical light. For this kind of application an
understanding of the coherence properties of its optical tran-
sitions is of great importance. Therefore, there are two pro-
cesses in optical manipulation with semiconductor QDs: co-
herent control of the QD exciton state12 and measurement of
quantum statistics of emitted light with QD.13 A theoretical
investigation of exciton dynamics and the possibility of gen-
eration of nonclassical light has been considered without tak-
ing into account the phonon effects.14

In this paper, we investigate the effects of electron-
phonon interactions on optical coherence and quantum sta-
tistics of light emitted by a pulse driven QD interacting with
a cavity mode. The photon statistics from a driven QD under
the influence of the phonon environment has been considered

recently.15 On the other hand, influence of phonons on inco-
herent photon emission of a QD in the presence of pulse
excitation had been considered.16 We use the most widely
studied model for phonon effects in QDs which accounts two
electronic levels coupled to a laser pulse and to noninteract-
ing phonons.17 As mentioned, phonon interaction provides a
dephasing mechanism for optically induced coherence on a
time scale �a few picosecond� much shorter than for radiative
interaction and recombination.18 Due to the different corre-
lation time for a phonon reservoir �few picoseconds� and for
a radiative reservoir �several ten nanoseconds� we restrict our
attention to the time scales which dephasing effects due to
the phonon system play an important role. With the radiative
reservoir we mean a reservoir for photon system. The men-
tioned time scale relates to the decay time of cavity photons.
Then we do not consider any damping effect on cavity mode
and spontaneous emission. In our consideration the only
damping effect is related to phonons.

The paper is organized as follows. In Sec. II we describe
the model Hamiltonian and master equation that allows to
calculate the evolution of populations and coherence of the
energy levels. In Sec. III we present the exciton dynamics
and its coherence while driven with a laser pulse. The photon
statistics and exciton dynamics of pulse driven QD interact-
ing with a cavity mode are presented and discussed in Sec.
IV. Section V is devoted to a summary and conclusion.

II. THEORETICAL MODEL

We consider a single QD inside a semiconductor micro-
cavity that is pumped with a laser pulse and interacts with a
cavity mode. It is assumed that the system is initially pre-
pared in its ground state. We consider a solid-state reservoir
for the exciton population and we focus on time scales which
phonon effects are important. We neglect other sources of
damping in the system. We model the QD by a two-level
system with ground state �g� �the semiconductor ground
state� and first excited state �e� �a single exciton�, separated
by an energy ��ex. The phonon environment is modeled by a
bath of harmonic oscillators of frequencies �k, with the wave
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vector k. The Hamiltonian of the total system in the rotating
wave approximation is written as

Ĥ = ��ex�̂ee + ��câ
†â + �

k

��kb̂k
†b̂k + �g��̂egâ + â†�̂ge�

+ �f�t���̂eg + �̂ge� + �̂ee�
k

�k�b̂k + b̂k
†� , �1�

where �̂ij = �i��j�, â �â†� and b̂k �b̂k
†� are the annihilation �cre-

ation� operators for cavity mode, and kth phonon mode, re-
spectively. The parameter g is the coupling constant of the
exciton and cavity mode, and f�t� is a real envelope function
of the driving pulse. The last term in the Hamiltonian de-
scribes the exciton-phonon interaction. In this term, �k is the
corresponding coupling constant. The coupling of the con-
fined exciton to the acoustic phonons by means of the defor-
mation potential tends to dominant the dephasing dynamics,
over the piezoelectric interaction or coupling to optical
phonons.19 In this case, the coupling constant is given by
�k=kD�k��2n�kV �Ref. 20� where n is the sample density
and V is the unit cell volume. D�k� is the form factor of the
confined electron and hole in the ground state of the QD. The
Hamiltonian in the interaction picture can be written as

Ĥint = Ĥ0 + ĤR, �2�

where we decompose the coherent-field part and environ-
ment part as follows:

Ĥ0 = �g��̂egâei�t + â†�̂gee
−i�t� + �f�t���̂egei�ext + �̂gee

−i�ext� ,

ĤR = �̂ee�
k

�k�b̂ke
−i�kt + b̂†ei�kt� . �3�

In this equation �=�ex−�c is detuning between the exciton
excitation energy in the QD and cavity field energy.

Now we consider the Liouville equation of density matrix
in the interaction picture

d�̂t

dt
=

i

�
��̂t,Ĥint	 . �4�

We define the reduced density matrix �̂ for the exciton-
photon system by tracing out the phonon degrees of freedom
in the total density matrix, �̂=Trph��̂t�. Now we consider the
master equation in the Born approximation1,2 in the case of
the phonon interaction while we consider the gain and pump
parts exactly. Phonons are one of the slowest processes and
this kind of reservoir has a correlation time on the order of a
few picoseconds19 and this reservoir is naturally non-
Markovian. To consider non-Markovian dynamics we have
used time convolutionless projection operator method,21 up
to second order of expansion. We assume an uncorrelated
state for initial state of the exciton-photon system and pho-
non reservoir. At the initial time t=0 the phonon system is
assumed to be in a thermal equilibrium at temperature T.
Then the density operator of the exciton-photon system sat-
isfies the following dynamical equation:

�̇�t� =
i

�
���t�,Ĥ0	 − 


0

t

���̂ee,�̂ee��t�	K�t − t��

− ��̂ee,��t��̂ee	K��t − t���dt�. �5�

The first term describes the coherent evolution of the density

matrix � under the action of the Hamiltonian Ĥ0 of the dot-
cavity-pulse system. The kernel K which is the correlation
function of the environment is written as

K�t� =
1

�2

0

�

d�j����coth� ��

2kBT

cos��t� − i sin��t�� ,

�6�

with Boltzmann constant kB. j��� is the spectral density of
the phonons which completely describes the interaction of
exciton and phonons.22 Here, we introduce the following
spectral density:

j��� = �
k

�k
2��� − �k� . �7�

The density matrix dynamics is obtained under the Born
approximation for exciton-phonon interaction and the strong
exciton-photon interaction and pump effects are described
exactly. We can extract exciton dynamics and photon statis-
tics from this equation.

III. EXCITON DYNAMICS UNDER A DRIVING PULSE

In this section we consider the optical coherence of a
driven QD under a pump pulse. Here we neglect the cavity
mode and we consider optical coherence and exciton popu-
lation dynamics under pulse excitation and effects of physi-
cal parameters such as pulse duration on these physical quan-
tities. Then the density matrix of the excitonic system
satisfies the following equation of motion:

�̇ex�t� =
i

�
��ex�t�,���̂eg	�t� + �̂ge	

��t��	

− 

0

t

���̂ee,�̂ee��t�	K�t − t��

− ��̂ee,��t��̂ee	K��t − t���dt�, �8�

where 	�t�= f�t�ei�ext. Exciton population and optical in-
duced coherence in the QD system are defined through the
different matrix elements of the density matrix. Exciton
population and optical coherence are defined with the fol-
lowing set of equations, respectively:

Ṗ�t� = i	�t��2Ne�t� − 1	 − P�t�

0

t

K�t − t��dt�,

Ṅe�t� = 2i Im�	��t�P�t�	 , �9�

where P�t�= �e��̂ex�t��g� and Ne�t�= �e��̂ex�t��e�. We assume at
t=0 the QD be in its ground state and at this time it is excited
with a Gaussian pulse excitation with envelope function
f�t�= A

�2
a
e−t2/a2

where a is the pulse width and A is a mea-
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sure of pulse amplitude. For numerical integration of this set
of equations, we shall take a GaAs QD with a spherical
shape. In this case the spectral density is given by

j��� =
��e − �h�2

4
2�c5 �3e−3l2/2c2�2
, �10�

where �e and �h are the bulk deformation potential constants
for electron and hole, c is the sound velocity in the sample,
and l is the electron and hole ground-state localization length
�we assume a spherically symmetric harmonic confinement
potential for the QD and electron and hole in the ground
state�. We use the following numerical values: �e−�h
=9 eV, �=5350 kg /m3, c=5150 m /s, and l=4.5 nm
�these material parameters are approximately acquired from
Ref. 12�. Figure 1 shows plots of the time evolution of the
exciton inversion for two values of pulse duration. In first
picoseconds of dynamics the time evolution shows a strong
decrease in exciton inversion due to the phonon effects and
then we see a stable oscillation in inversion behavior during
the pulse duration. It is clear from the figure that the phonon
effects can prevent exciton generation. On the other hand, we
see the complex behavior on the same time scales of initial
dynamics for each pulse duration and after that small oscil-
lations will continue at the end of pulse duration. Then we
conclude that in the first steps of dynamics the influence of
phonons is a very important damping effect. Figure 2 shows

plots of Im P�t� to consider the time evolution of optical
coherence. As in the case of exciton population, optical co-
herence experiences a very rapid decrease during some first
picoseconds. After this strong decrease we see very small
stable oscillations in optical coherence. Therefore, we con-
clude phonon effects are very important on time scales
smaller than the spontaneous decay time and we can consider
phonon reservoir as dominant damping source during the
first steps of dynamics.

IV. INTERACTION OF QD WITH CAVITY MODE

In this section we consider the interaction of the QD em-
bedded in a microcavity with cavity mode. In this case, the
density matrix for the system satisfies Eq. �5�. By using Eq.
�5� one can get a set of differential equations that describe
the evolution of the populations and coherence of the
cavity-QD system. In the basis of product states between the
QD states and Fock states of the cavity mode ��en� , �gn�� we
calculate the matrix elements of the exciton-photon density
matrix. By taking the matrix elements in Eq. �5� we get the
following set of linear differential equations for the popula-
tions and coherence in the QD-photon system �we have used
the notation �in,jm= �in���jm� in which i and j refer to QD
states�:
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FIG. 1. Plots of exciton inversion versus time for two different
values of pulse duration: �a� a=10 ps, �b� a=40 ps. Material pa-
rameters are pointed out in the text and T=30 K.
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FIG. 2. Plots of imaginary part of optical polarization versus
time for two different values of pulse duration: �a� a=10 ps, �b�
a=40 ps. Material parameters are pointed out in the text and T
=30 K.
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�̇en−1,en−1�t� = ig�n��en−1,gn�t�e−i�t − �gn,en−1�t�ei�t	 + if�t�

���en−1,gn−1�t�e−i�ext − �gn−1,en−1�t�ei�ext	 ,

�11a�

�̇gn,gn�t� = ig�n��gn,en−1�t�ei�t − �en−1,gn�t�e−i�t	 + if�t�

���gn,en�t�ei�ext − �en,gn�t�e−i�ext	 , �11b�

�̇en−1,gn�t� = ig�n��en−1,en−1�t�ei�t − �gn,gn�t�ei�t	

− �en−1,gn�t�

0

t

K�t − t��dt�, �11c�

�̇en−1,gn−1�t� = if�t���en−1,en−1�t�ei�ext − �gn−1,gn−1�t�ei�ext	

− �en−1,gn−1�t�

0

t

K�t − t��dt�. �11d�

In the absence of pulse excitation, the matrix elements
�en−1,en−1�t�, �gn,gn�t�, �en−1,gn�t�, and �gn,en−1�t�, for a given
photon number, satisfy a closed set of differential equations.
However, the excitation pulse couples the different terms to
each other and an infinite set of equations has to be solved.
In the process of obtaining the above set of equations we
neglect the terms like �gn,gn−1�t� and �en,en−1�t� because these
terms do not have physical meaning related to the conditions
under consideration. These terms show a coherence in pho-
ton field while the QD remains in its state. This could be
related to photon damping which we have neglected such
kind of terms. On the other hand, we maintain terms such as
�en,gn�t� which describe coherence in QD system while pho-
ton number is constant. As is clear from Eq. �12� these terms
can be generated during the dynamics by the pump pulse.

As initial condition we take at t=0 the QD in its ground
state and cavity field in the vacuum state �g0,g0�0�=1, and all
other elements of the density matrix equal to zero. For the
numerical integration, the set of equations can be truncated
at a given value, which we take it equal to 90 �this value is
chosen with the condition that the results do not change with
increasing the number of equations�.

Photon statistics and material characteristics such as in-
version population and optical coherence can be obtained
from Eq. �12�. At first we consider Mandel parameter of the
cavity field which is defined as23

M =
�n̂2� − �n̂�2

�n̂�
− 1. �12�

This parameter vanishes for the Poisson distribution, is posi-
tive for the super-Poisson distribution �photon bunching ef-
fect�, and is negative for the sub-Poisson distribution �photon
antibunching effect�. The mean number of photons in the
cavity is �other moments of n̂ can be calculated in the same
manner�

�n̂� = �
n

n��en,en�t� + �gn,gn�t�	 . �13�

Mandel parameter for the case of resonant interaction ��
=0� and in the presence of detuning is plotted, respectively,

in Figs. 3 and 4 for two different values of pulse duration. As
is seen, the cavity field mode exhibits nonclassical �sub-
Poissonian statistics� in the course of time evolution. Another
important feature of this plot is the oscillatory behavior of
Mandel parameter for time scales approximately two times
of pulse duration. Therefore, the emitted photons to cavity
mode by QD in the course of the excitation duration can be
reabsorbed by QD and re-excite the QD then after the end of
pulse duration we have oscillations in photon statistics. On
the other hand, it is clear that with increasing the detuning
feature the amplitude of oscillations in Mandel parameter
decreases.

Another important quantity in photon statistics is second
order coherence function, g�2��t ,�� 1,23 which is a two-time
correlation function. Here we consider this quantity for the
case of zero time delay, g�2��t ,�=0�. This quantity can be
used as an indication of the possible coherence of the state of
the photon system. For the single mode cavity field g�2��t ,�
=0� has the following definition:

FIG. 3. Mandel parameter versus time for pulse duration a
=10 ps and T=30 K for two different values of detuning �=0.0,
�=1.0.

FIG. 4. Mandel parameter versus time for pulse duration a
=40 ps and T=30 K for two different values of detuning �=0.0,
�=1.0.
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g�2��t,� = 0� =
�a†a†aa�

�a†a�2 =
�n

n�n − 1���en,en�t� + �gn,gn�t�	

��n
n��en,en�t� + �gn,gn�t�	�2 .

�14�

In the case of resonant interaction and off-resonant interac-
tion, the plots of this quantity are shown in Figs. 5 and 6,
respectively. The figures show nonclassical nature of emitted
photons �photon antibunching�. This quantity shows similar
oscillatory behavior to the Mandel parameter and its oscilla-
tory behavior continue up to times twice the pulse duration.
According to these plots the detuning effects on g�2��t ,�
=0� are similar to its effects on the Mandel parameter and
cause the amplitude of oscillation be reduced. Therefore, in
these conditions without any restriction on physical param-
eters �damping coefficients and coupling constant� it is pos-
sible that QD emits antibunched photons with sub-
Poissonian statistics. The possibility of emitting antibunched

photons with sub-Poissonian statistics by a single QD has
been considered experimentally.24

The time evolution of the QD coherence in the process of
one photon interaction P�t�= �e0���t��g1� is shown in Figs. 7
and 8 for different values of pulse duration and detuning. In
these figures we plot imaginary part of P�t�. These figures
indicating occurrence of decoherence �damping of the imagi-
nary part of polarization� in the system. The main source of
this decoherence is phonon interaction. In the case of pulse
with long duration we see an irregular oscillation in some
time periods. It is clear that detuning prevents the coherence
in this system. However the detuning is increased the imagi-
nary part of coherence P�t� and increasing of detuning leads
to the regular oscillatory behavior and causes damping will
decrease. In turn, because of the detuning, which weakens
the dynamics, the pumping should be increased. Hence these
two parameters can be considered as some experimental pa-
rameters for controlling the decoherence in the QD systems
on the time scales under consideration. On the other hand, by
comparing Fig. 2 with Fig. 7 we can conclude that while the
QD interacts with a cavity mode its optical coherence be-

FIG. 5. g�2��t ,�=0� as a function of time for pulse duration a
=10 ps and T=30 K for two different values of detuning �=0.0,
�=1.0.

FIG. 6. g�2��t ,�=0� as a function of time for pulse duration a
=40 ps and T=30 K for two different values of detuning �=0.0,
�=1.0.

FIG. 7. Im P�t� as a function of time for three different values of
detuning and for pulse duration a=10 ps. In this plot T=30 K.

FIG. 8. Im P�t� as a function of time for three different values of
detuning and for pulse duration a=40 ps. In this plot T=30 K.
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tween energy levels has a longer lifetime. Then this can be
considered as another experimental condition for controlling
of optical coherence.

V. CONCLUSION

In this paper we have considered phonon effects �dephas-
ing effects� on optical properties of a pulse driven QD. We
have shown that these effects strongly affect the Rabi oscil-
lations and optical coherence. In the time scales which spon-
taneous emission and nonradiative recombination do not play
an important role in the dynamics �characteristic times of
these effects are much longer than the characteristic time of
phonon reservoir� the phonons strongly affect optical prop-
erties of QD. In the case of the interaction of system under
consideration with cavity mode we have shown that emitted
photons are antibunched and obey the sub-Poissonian statis-
tics. Then in the microcavity with high quality factor which
contains a single QD it is possible to generate nonclassical
light in the first some ten picoseconds. Here, we have con-
sidered a Gaussian pulse as a pump. We have shown that

with the ending of pump, oscillations in the photon statistics
continue until times twice the pulse duration. This relates to
cavity photon which remains in the cavity and after ending
of pump re-excites the QD. On the other hand, we have
considered the detuning effect on the optical coherence of
QD and we have seen that detuning can prevent decoherence
effects. Hence, detuning can be considered as a controlling
parameter of optical coherence. While QD interacts reso-
nantly with the cavity mode, we have found that its optical
coherence has a longer lifetime in comparison with its inter-
action with classical pulse. Then by putting the QD in the
cavity it can maintain its coherence between energy levels.
Therefore, the off-resonant interaction of a QD with cavity
mode can be considered as an experimental tool for sup-
pressing decoherence effects on the exciton.
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